LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electric Field Stimulation for the Functional Assessment of Isolated Dorsal Root Ganglion Neuron Excitability.

Photo from wikipedia

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue… Click to show full abstract

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.

Keywords: root ganglion; dorsal root; neuron excitability; electric field; ganglion neuron

Journal Title: Annals of biomedical engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.