LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extended Global Asymptotic Stability Conditions for a Generalized Reaction–Diffusion System

Photo by conscious_design from unsplash

In this paper, we consider the general reaction–diffusion system proposed in Abdelmalek and Bendoukha (Nonlinear Anal., Real World Appl. 35:397–413, 2017) as a generalization of the original Lengyel–Epstein model developed… Click to show full abstract

In this paper, we consider the general reaction–diffusion system proposed in Abdelmalek and Bendoukha (Nonlinear Anal., Real World Appl. 35:397–413, 2017) as a generalization of the original Lengyel–Epstein model developed for the revolutionary Turing-type CIMA reaction. We establish sufficient conditions for the global existence of solutions. We also follow the footsteps of Lisena (Appl. Math. Comput. 249:67–75, 2014) and other similar studies to extend previous results regarding the local and global asymptotic stability of the system. In the local PDE sense, more relaxed conditions are achieved compared to Abdelmalek and Bendoukha (Nonlinear Anal., Real World Appl. 35:397–413, 2017). Also, new extended results are achieved for the global existence, which when applied to the Lengyel–Epstein system, provide weaker conditions than those of Lisena (Appl. Math. Comput. 249:67–75, 2014). Numerical examples are used to affirm the findings and benchmark them against previous results.

Keywords: system; asymptotic stability; reaction diffusion; global asymptotic; reaction; diffusion system

Journal Title: Acta Applicandae Mathematicae
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.