LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complexity of oscillatory integrals on the real line

Photo from wikipedia

AbstractWe analyze univariate oscillatory integrals defined on the real line for functions from the standard Sobolev space Hs(ℝ)$H^{s} (\mathbb {R})$ and from the space Cs(ℝ)$C^{s}(\mathbb {R})$ with an arbitrary integer… Click to show full abstract

AbstractWe analyze univariate oscillatory integrals defined on the real line for functions from the standard Sobolev space Hs(ℝ)$H^{s} (\mathbb {R})$ and from the space Cs(ℝ)$C^{s}(\mathbb {R})$ with an arbitrary integer s ≥ 1. We find tight upper and lower bounds for the worst case error of optimal algorithms that use n function values. More specifically, we study integrals of the form 1Ikϱ(f)=∫ℝf(x)e−ikxϱ(x)dxforf∈Hs(ℝ)orf∈Cs(ℝ)$$ I_{k}^{\varrho} (f) = {\int}_{\mathbb{R}} f(x) \,\mathrm{e}^{-i\,kx} \varrho(x) \, \mathrm{d} x\ \ \ \text{for}\ \ f\in H^{s}(\mathbb{R})\ \ \text{or}\ \ f\in C^{s}(\mathbb{R}) $$ with k∈ℝ$k\in {\mathbb {R}}$ and a smooth density function ρ such as ρ(x)=12πexp(−x2/2)$ \rho (x) = \frac {1}{\sqrt {2 \pi }} \exp (-x^{2}/2)$. The optimal error bounds are Θ((n+max(1,|k|))−s)${\Theta }((n+\max (1,|k|))^{-s})$ with the factors in the Θ notation dependent only on s and ϱ.

Keywords: real line; oscillatory integrals; mathbb; complexity oscillatory

Journal Title: Advances in Computational Mathematics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.