LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The spectral collocation method for efficiently solving PDEs with fractional Laplacian

Photo from archive.org

We derive a spectral collocation approximation to the fractional Laplacian operator based on the Riemann-Liouville fractional derivative operators on a bounded domain Ω = [a, b]. Corresponding matrix representations of… Click to show full abstract

We derive a spectral collocation approximation to the fractional Laplacian operator based on the Riemann-Liouville fractional derivative operators on a bounded domain Ω = [a, b]. Corresponding matrix representations of (−△)α/2 for α ∈ (0,1) and α ∈ (1,2) are obtained. A space-fractional advection-dispersion equation is then solved to investigate the numerical performance of this method under various choices of parameters. It turns out that the proposed method has high accuracy and is efficient for solving these space-fractional advection-dispersion equations when the forcing term is smooth.

Keywords: method efficiently; collocation method; spectral collocation; fractional laplacian

Journal Title: Advances in Computational Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.