We present in this paper a spectrally accurate numerical method for computing the spherical/vector spherical harmonic expansion of a function/vector field with given (elemental) nodal values on a spherical surface.… Click to show full abstract
We present in this paper a spectrally accurate numerical method for computing the spherical/vector spherical harmonic expansion of a function/vector field with given (elemental) nodal values on a spherical surface. Built upon suitable analytic formulas for dealing with the involved highly oscillatory integrands, the method is robust for high mode expansions. We apply the numerical method to the simulation of three-dimensional acoustic and electromagnetic multiple scattering problems. Various numerical evidences show that the high accuracy can be achieved within reasonable computational time. This also paves the way for spectral-element discretization of 3D scattering problems reduced by spherical transparent boundary conditions based on the Dirichlet-to-Neumann map.
               
Click one of the above tabs to view related content.