LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Second-kind integral equations for the Laplace-Beltrami problem on surfaces in three dimensions

Photo from wikipedia

The Laplace-Beltrami problem ΔΓψ = f has several applications in mathematical physics, differential geometry, machine learning, and topology. In this work, we present novel second-kind integral equations for its solution… Click to show full abstract

The Laplace-Beltrami problem ΔΓψ = f has several applications in mathematical physics, differential geometry, machine learning, and topology. In this work, we present novel second-kind integral equations for its solution which obviate the need for constructing a suitable parametrix to approximate the in-surface Green’s function. The resulting integral equations are well-conditioned and compatible with standard fast multipole methods and iterative linear algebraic solvers, as well as more modern fast direct solvers. Using layer-potential identities known as Calderón projectors, the Laplace-Beltrami operator can be pre-conditioned from the left and/or right to obtain second-kind integral equations. We demonstrate the accuracy and stability of the scheme in several numerical examples along surfaces described by curvilinear triangles.

Keywords: second kind; integral equations; laplace beltrami; kind integral

Journal Title: Advances in Computational Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.