The Laplace-Beltrami problem ΔΓψ = f has several applications in mathematical physics, differential geometry, machine learning, and topology. In this work, we present novel second-kind integral equations for its solution… Click to show full abstract
The Laplace-Beltrami problem ΔΓψ = f has several applications in mathematical physics, differential geometry, machine learning, and topology. In this work, we present novel second-kind integral equations for its solution which obviate the need for constructing a suitable parametrix to approximate the in-surface Green’s function. The resulting integral equations are well-conditioned and compatible with standard fast multipole methods and iterative linear algebraic solvers, as well as more modern fast direct solvers. Using layer-potential identities known as Calderón projectors, the Laplace-Beltrami operator can be pre-conditioned from the left and/or right to obtain second-kind integral equations. We demonstrate the accuracy and stability of the scheme in several numerical examples along surfaces described by curvilinear triangles.
               
Click one of the above tabs to view related content.