LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fully discrete Galerkin method for Abel-type integral equations

Photo by stayandroam from unsplash

In this paper, we present a Galerkin method for Abel-type integral equation with a general class of kernel. Stability and quasi-optimal convergence estimates are derived in fractional-order Sobolev norms. The… Click to show full abstract

In this paper, we present a Galerkin method for Abel-type integral equation with a general class of kernel. Stability and quasi-optimal convergence estimates are derived in fractional-order Sobolev norms. The fully-discrete Galerkin method is defined by employing simple tensor-Gauss quadrature. We develop a corresponding perturbation analysis which allows to keep the number of quadrature points small. Numerical experiments have been performed which illustrate the sharpness of the theoretical estimates and the sensitivity of the solution with respect to some parameters in the equation.

Keywords: type integral; abel type; method abel; method; fully discrete; galerkin method

Journal Title: Advances in Computational Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.