This paper reports the removal of two widely used pharmaceuticals, namely dipyrone and diclofenac, by magnetic nickel ferrite nanoparticles. A method combining nickel ferrite nanoparticles and high-performance liquid chromatography was… Click to show full abstract
This paper reports the removal of two widely used pharmaceuticals, namely dipyrone and diclofenac, by magnetic nickel ferrite nanoparticles. A method combining nickel ferrite nanoparticles and high-performance liquid chromatography was applied for the simultaneous monitoring of these polar compounds. The adsorption process of the target compounds on nickel ferrite nanoparticles was performed by using only 800 mg L−1 of the adsorbent at pH 5.8. From the experimental adsorption isotherms, maximum adsorption resulted 31.2 mg g−1 for dipyrone and 16.8 mg g−1 for diclofenac, with dipyrone having a slightly higher affinity for the surface than diclofenac. The presence of dissolved salts in water samples affected the adsorption with removal efficiency remaining between 30–42% for diclofenac and 40–60% for dipyrone. On the other hand, desorption of the drugs was achieved using methanol for diclofenac and ascorbic acid for dipyrone. This research provides the understanding of the adsorption behavior of polar pharmaceuticals on bare nickel ferrite nanoparticles, which promotes the large-scale application of these magnetic nanoparticles to the removal of pharmaceuticals from water samples and their further selective recovery.
               
Click one of the above tabs to view related content.