LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of interspecific competition on the growth and nutrient uptake of three macrophytes in nutrient-rich water

Photo from wikipedia

Nutrient uptake by plants in nutrient-rich water in competitive conditions was investigated with two mixed culture combinations of Limnocharis flava/Pistia stratiotes and Limnocharis flava/Ipomoea aquatica by using various initial planting… Click to show full abstract

Nutrient uptake by plants in nutrient-rich water in competitive conditions was investigated with two mixed culture combinations of Limnocharis flava/Pistia stratiotes and Limnocharis flava/Ipomoea aquatica by using various initial planting densities. Further, the biomass production and other growth-related parameters were measured to understand the dominant competitive behavior. The effects of interspecific competition on influencing nutrient uptake were substantial. In both experiments, the superior competitor produced a higher biomass regardless of the initial density, which was the dominant factor in determining the total nutrient uptake from water. Both aboveground competition and belowground competition appeared to be important in influencing competitive outcomes. Optimal removal of nutrients was produced by a treatment ratio of 5.31: 5.31 Limnocharis flava/Ipomoea aquatica plants/m2, which gave the highest observed nutrient removal, of which approximately 52% of TN removal and 90% of TP removal were due to plant uptake.

Keywords: rich water; interspecific competition; competition; nutrient rich; nutrient uptake

Journal Title: Aquatic Ecology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.