LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phenotypic plasticity and developmental noise in hybrid and parental clones of Daphnia longispina complex

Photo by elyaspasban from unsplash

According to the “temporal hybrid superiority hypothesis”, seasonal variability in environmental factors in temperate lakes gives hybrid clones within the D. longispina complex a temporary fitness advantage, thus allowing long-term,… Click to show full abstract

According to the “temporal hybrid superiority hypothesis”, seasonal variability in environmental factors in temperate lakes gives hybrid clones within the D. longispina complex a temporary fitness advantage, thus allowing long-term, dynamic coexistence of hybrids and maternal taxa. However, the maintenance of hybrids would not require their superiority under any given set of environmental conditions if their average fitness over longer periods surpassed that of more specialized and less flexible parental clones. Phenotypic plasticity and developmental noise of several hybrid and maternal clones of Daphnia (Daphnia galeata, Daphnia hyalina, their hybrids and backcrosses) were compared in a series of laboratory experiments. Changes in depth selection and body size at first reproduction were scored in Daphnia exposed to predator (planktivorous fish) threat, to the presence of filamentous cyanobacteria (Cylindrospermopsis raciborskii), and to the presence of toxic compounds (PCB52 and PCB153). The hybrid clones were found to exhibit the broadest phenotypic plasticity of the studied traits in response to the different stress factors. Developmental noise in depth selection behaviour was the lowest in Daphnia galeata, the highest in Daphnia hyalina, and intermediate in hybrid and backcross clones. This diversity of reaction norms might permit the coexistence of closely related Daphnia clones in the variable and often unpredictable lake environment.

Keywords: developmental noise; phenotypic plasticity; daphnia; longispina complex; parental clones

Journal Title: Aquatic Ecology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.