Inhalation of airborne fungi is known to cause respiratory illnesses such as allergies. However, the association between exposure and health outcomes remains largely unclear, in part due to lack of… Click to show full abstract
Inhalation of airborne fungi is known to cause respiratory illnesses such as allergies. However, the association between exposure and health outcomes remains largely unclear, in part due to lack of knowledge about fungal exposure in daily life. This study aims to introduce DNA-based methods such as high-throughput sequencing (HTS) and quantitative polymerase chain reaction (qPCR) to compare fungal microbiota and concentrations in indoor, outdoor, and personal air. Five sets of concurrent indoor, outdoor, and personal air samples were collected, each with duration of 4 days. Sequencing analysis revealed greater species richness in personal than indoor air for four out of the five sets, indicating that people are exposed to outdoor species that are not in indoor air. The personal–indoor (P/I) and personal–outdoor (P/O) ratios of total fungi were 1.2 and 0.15, respectively, suggesting that personal exposure to total fungi is better represented by indoor than outdoor concentrations. However, the ratios were taxon dependent, highlighting the complexity of generalizing personal exposure to the diverse kingdom Fungi. These results demonstrate that the HTS/qPCR method is useful for assessing taxon-specific fungal exposure, which might be difficult to achieve effectively using conventional, non-DNA-based techniques.
               
Click one of the above tabs to view related content.