We study the positive Hermitian curvature flow on the space of left-invariant metrics on complex Lie groups. We show that in the nilpotent case, the flow exists for all positive… Click to show full abstract
We study the positive Hermitian curvature flow on the space of left-invariant metrics on complex Lie groups. We show that in the nilpotent case, the flow exists for all positive times and subconverges in the Cheeger-Gromov sense to a soliton. We also show convergence to a soliton when the complex Lie group is almost abelian. That is, when its Lie algebra admits a (complex) co-dimension one abelian ideal. Finally, we study solitons in the almost-abelian setting. We prove uniqueness and completely classify all left-invariant, almost-abelian solitons, giving a method to construct examples in arbitrary dimensions, many of which admit co-compact lattices.
               
Click one of the above tabs to view related content.