LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features

Photo by aleexcif from unsplash

Hierarchical feature selection is a new research area in machine learning/data mining, which consists of performing feature selection by exploiting dependency relationships among hierarchically structured features. This paper evaluates four… Click to show full abstract

Hierarchical feature selection is a new research area in machine learning/data mining, which consists of performing feature selection by exploiting dependency relationships among hierarchically structured features. This paper evaluates four hierarchical feature selection methods, i.e., HIP, MR, SHSEL and GTD, used together with four types of lazy learning-based classifiers, i.e., Naïve Bayes, Tree Augmented Naïve Bayes, Bayesian Network Augmented Naïve Bayes and k-Nearest Neighbors classifiers. These four hierarchical feature selection methods are compared with each other and with a well-known “flat” feature selection method, i.e., Correlation-based Feature Selection. The adopted bioinformatics datasets consist of aging-related genes used as instances and Gene Ontology terms used as hierarchical features. The experimental results reveal that the HIP (Select Hierarchical Information Preserving Features) method performs best overall, in terms of predictive accuracy and robustness when coping with data where the instances’ classes have a substantially imbalanced distribution. This paper also reports a list of the Gene Ontology terms that were most often selected by the HIP method.

Keywords: hierarchical feature; selection methods; ontology; feature selection

Journal Title: Artificial Intelligence Review
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.