LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial neural networks for water quality soft-sensing in wastewater treatment: a review

Photo by evieshaffer from unsplash

This paper aims to present a comprehensive survey on water quality soft-sensing of a wastewater treatment process (WWTP) based on artificial neural networks (ANNs). We mainly present problem formulation of… Click to show full abstract

This paper aims to present a comprehensive survey on water quality soft-sensing of a wastewater treatment process (WWTP) based on artificial neural networks (ANNs). We mainly present problem formulation of water quality soft-sensing, common soft-sensing models, practical soft-sensing examples and discussion on the performance of soft-sensing models. In details, problem formulation includes characteristic analysis and modeling principle of water quality soft-sensing. The common soft-sensing models mainly include a back-propagation neural network, radial basis function neural network, fuzzy neural network (FNN), echo state network (ESN), growing deep belief network and deep belief network with event-triggered learning (DBN-EL). They are compared in terms of accuracy, efficiency and computational complexity with partial-least-square-regression DBN (PLSR-DBN), growing ESN, sparse deep belief FNN, self-organizing DBN, wavelet-ANN and self-organizing cascade neural network (SCNN). In addition, this paper generally discusses and explains what factors affect the accuracy of the ANNs-based soft-sensing models. Finally, this paper points out several challenges in soft-sensing models of WWTP, which may be helpful for researchers and practitioner to explore the future solutions for their particular applications.

Keywords: soft sensing; quality soft; network; water quality

Journal Title: Artificial Intelligence Review
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.