LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Symmetry of the Definition of Degeneration in Triangulated Categories

Photo from wikipedia

Module structures of an algebra on a fixed finite dimensional vector space form an algebraic variety. Isomorphism classes correspond to orbits of the action of an algebraic group on this… Click to show full abstract

Module structures of an algebra on a fixed finite dimensional vector space form an algebraic variety. Isomorphism classes correspond to orbits of the action of an algebraic group on this variety and a module is a degeneration of another if it belongs to the Zariski closure of the orbit. Riedtmann and Zwara gave an algebraic characterisation of this concept in terms of the existence of short exact sequences. Jensen, Su and Zimmermann, as well as independently Yoshino, studied the natural generalisation of the Riedtmann-Zwara degeneration to triangulated categories. The definition has an intrinsic non-symmetry. Suppose that we have a triangulated category in which idempotents split and either for which the endomorphism rings of all objects are artinian, or which is the category of compact objects in an algebraic compactly generated triangulated K-category. Then we show that the non-symmetry in the algebraic definition of the degeneration is inessential in the sense that the two possible choices which can be made in the definition lead to the same concept.

Keywords: definition; symmetry definition; definition degeneration; degeneration triangulated; triangulated categories; degeneration

Journal Title: Algebras and Representation Theory
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.