The notion of an exponential R-group, where R is an arbitrary associative ring with unity, was introduced by R. Lyndon. A. G. Myasnikov and V. N. Remeslennikov refined this notion… Click to show full abstract
The notion of an exponential R-group, where R is an arbitrary associative ring with unity, was introduced by R. Lyndon. A. G. Myasnikov and V. N. Remeslennikov refined this notion by adding an extra axiom. In particular, the new notion of an exponential MR-group is an immediate generalization of the notion of an R-module to the case of noncommutative groups. Basic concepts in the theory of exponential MR-groups are presented, and we propose a particular method for constructing tensor completion—the key construction in the category of MR-groups. As a consequence, free MR-groups and free MR-products are described using the language of group constructions.
               
Click one of the above tabs to view related content.