LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RF transceiver and transmission line behavioral modeling in VHDL-AMS for wired RFNoC

Photo from archive.org

Despite the exceptional progress of MPSoC architectures, on chip communication networks remain a lock for the evolution of their performances due to the power consumption and the delay in data… Click to show full abstract

Despite the exceptional progress of MPSoC architectures, on chip communication networks remain a lock for the evolution of their performances due to the power consumption and the delay in data carrying. In this context, the wired radio frequency (RF) network on chip (RFNoC) has emerged. In this paper, we developed a library of RF component models in VHDL-AMS for time domain simulation. This library includes mainly the transmission line (TL) and the RF transceiver components such as the low noise amplifier (LNA), the mixer and the local oscillator (LO). The models consider the conventional parameters describing their performances including the non-linearities, the noise and the bandwidth of the LNA and the mixer. Leakages between ports are also considered for the mixer. The LO model considers the traditional parameters, more importantly its phase noise. The originality of the TL model is the modeling of the skin effect on a wide frequency range for time domain simulations. All the models are validated. Global simulations are performed to demonstrate the interest to accurately model the components of the RFNoC. The developed library is used here for wired RFNoC, however it can be used for all other wired and wireless RF communication system.

Keywords: vhdl ams; transceiver transmission; transmission line; wired rfnoc

Journal Title: Analog Integrated Circuits and Signal Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.