LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of thermal aware multilevel routing for 3D IC

Photo from wikipedia

Due to the technological advancements, the three dimensional Integrated Circuits become the most popular technology. But it has the major drawback of increased time consumption as well power consumption. This… Click to show full abstract

Due to the technological advancements, the three dimensional Integrated Circuits become the most popular technology. But it has the major drawback of increased time consumption as well power consumption. This happens because of the increased wire length and routing path for connecting the components in chip. Thus it is essential to reduce the wire length for the purpose of enhancing the circuit speed and minimize the power dissipation. But there may be a chance of temperature rise due to the heat generated by the slacked layers which also needs to be reduced. Several traditional approaches have addressed the issues of temperature rise and layer assignment. But the utilization of through-silicon-via is considered. Thus a new stochastic based genetic algorithm is proposed in this work for reducing the thermal estimations. Also the length of wire can be reduced by determining the minimal path so as to connect the components. Both partitioning and routing process takes place in this approach. The performance of the proposed approach is analyzed using ISPD2008 dataset. Also the results of this stochastic based model are compared with the existing algorithm. The superiority of this proposed approach is proved with reduced wire length and temperature estimations.

Keywords: aware multilevel; wire length; optimization thermal; wire; multilevel routing; thermal aware

Journal Title: Analog Integrated Circuits and Signal Processing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.