LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inequalities between Dirichlet and Neumann eigenvalues of vibrating strings

Photo from archive.org

The Dirichlet eigenvalues $${\{\lambda_{n}\}_{n=1}^{\infty}}$${λn}n=1∞ and Neumann eigenvalues $${\{\mu_{n}\}_{n=1}^{\infty}}$${μn}n=1∞ of the string equation $${\varphi'' (x) +\lambda \rho (x) \varphi(x) =0}$$φ′′(x)+λρ(x)φ(x)=0 are considered. It is known that $${ \mu_{n} < \lambda_{n} <… Click to show full abstract

The Dirichlet eigenvalues $${\{\lambda_{n}\}_{n=1}^{\infty}}$${λn}n=1∞ and Neumann eigenvalues $${\{\mu_{n}\}_{n=1}^{\infty}}$${μn}n=1∞ of the string equation $${\varphi'' (x) +\lambda \rho (x) \varphi(x) =0}$$φ′′(x)+λρ(x)φ(x)=0 are considered. It is known that $${ \mu_{n} < \lambda_{n} < \mu_{n+2}}$$μn<λn<μn+2 for all n. The purpose of this paper is to provide conditions on the mass density $${\rho(x)}$$ρ(x) under which $${\lambda_{n} < \mu_{n+1}}$$λn<μn+1 or $${\mu_{n+1} < \lambda_{n}.}$$μn+1<λn.

Keywords: lambda; vibrating strings; neumann eigenvalues; eigenvalues vibrating; inequalities dirichlet; dirichlet neumann

Journal Title: Acta Mathematica Hungarica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.