We investigate the Plancherel–Pólya inequality $$\sum {_{k \in \mathbb{Z}}} |f(k){|^2} \leqslant {c_2}\left( \sigma \right)||f||_{{L^2}\left( \mathbb{R} \right)}^2$$∑k∈ℤ|f(k)|2⩽c2(σ)||f||L2(ℝ)2 on the set of entire functions f of exponential type at most σ whose… Click to show full abstract
We investigate the Plancherel–Pólya inequality $$\sum {_{k \in \mathbb{Z}}} |f(k){|^2} \leqslant {c_2}\left( \sigma \right)||f||_{{L^2}\left( \mathbb{R} \right)}^2$$∑k∈ℤ|f(k)|2⩽c2(σ)||f||L2(ℝ)2 on the set of entire functions f of exponential type at most σ whose restrictions to the real line belong to the space L2(ℝ). We prove that c2(σ) = [σ/π] for σ > 0 and describe the extremal functions.
               
Click one of the above tabs to view related content.