LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing a double auction mechanism for the re-allocation of emission permits

Photo from wikipedia

This paper employs and extends the auction method for the re-allocation of emission permits (RAEP) at the China Beijing Environment Exchange (CBEE) to meet pollution reduction targets. An optimization method… Click to show full abstract

This paper employs and extends the auction method for the re-allocation of emission permits (RAEP) at the China Beijing Environment Exchange (CBEE) to meet pollution reduction targets. An optimization method is first proposed to calculate the optimal production quantity and emission permit demand/supply volume for firms with high/low pollution abatement cost. Then, the double auction method is adopted and extended to construct the RAEP double auction mechanism based on the principle of maximizing the total social welfare utility. To further explain this auction method, three matching mechanisms are proposed. Each mechanism achieves a balance between supply and demand of emission permits. Finally, a computational analysis of the real CBEE case is used to verify both the validity and practicability of the mechanism. The results show that the extended auction method presented in this paper could effectively increase the number of traded participants, improve the auction transaction efficiency, and increase the utilities of trading participants, compared to the auction method currently used in the CBEE; the extended method is always applicable regardless of the size of the permit market; the method could effectively realize the incentive compatibility, thus encouraging each firm to provide a real bid price.

Keywords: emission permits; auction; method; auction method; mechanism

Journal Title: Annals of Operations Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.