LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supply chain performance evaluation using fuzzy network data envelopment analysis: a case study in automotive industry

Photo from wikipedia

Supply chain performance evaluation problems are evaluated using data envelopment analysis. This paper proposes a fuzzy network epsilon-based data envelopment analysis for supply chain performance evaluation. In the common data… Click to show full abstract

Supply chain performance evaluation problems are evaluated using data envelopment analysis. This paper proposes a fuzzy network epsilon-based data envelopment analysis for supply chain performance evaluation. In the common data envelopment analysis models which are used for evaluation of decision-maker units efficiency, there are several inputs and outputs. One of the bugs of such models is that the intermediate products and linking activities are overlooked. Considering these intermediate activities and products, the current study evaluates the performance of decision-maker units in an automotive supply chain. There are ten decision-maker units in the supply chain in which there are three suppliers, two manufacturers, two distributors, and four customers. Moreover, the overall efficiency of input-oriented (input-based) model and input-oriented divisional efficiency are calculated. In order to improve the efficiencies, the projections onto the frontiers are obtained by using the outputs of the solved model and Lingo software. In order to show the applicability of the proposed model, it is applied on automotive industry, as a case study, to evaluate supply chain performance. Then, the overall efficiencies of DMUs and each sections (divisions) of DMUs were calculated separately. Therefore, every organization can apply this evaluation method for improving the performance of alternative factors.

Keywords: supply; supply chain; chain performance; evaluation

Journal Title: Annals of Operations Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.