LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data

Photo from wikipedia

In this article, a mathematical programming problem under affinely parameterized uncertain data with multiple objective functions given by SOS-convex polynomials, denoting by (UMP), is considered; moreover, its robust counterpart, denoting… Click to show full abstract

In this article, a mathematical programming problem under affinely parameterized uncertain data with multiple objective functions given by SOS-convex polynomials, denoting by (UMP), is considered; moreover, its robust counterpart, denoting by (RMP), is proposed by following the robust optimization approach (worst-case approach). Then, by employing the well-known $$\epsilon $$ ϵ -constraint method (a scalarization technique), we substitute (RMP) by a class of scalar problems. Under some suitable conditions, a zero duality gap result, between each scalar problem and its relaxation problems, is established; moreover, the relationship of their solutions is also discussed. As a consequence, we observe that finding robust efficient solutions to (UMP) is tractable by such a scalarization method. Finally, a nontrivial numerical example is designed to show how to find robust efficient solutions to (UMP) by applying our results.

Keywords: sos convex; optimization; efficient solutions; multiple objective; solutions robust; finding efficient

Journal Title: Annals of Operations Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.