LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reliability of time-constrained multi-state network susceptible to correlated component faults

Photo from wikipedia

Correlation can seriously degrade reliability and capacity due to the simultaneous failure of multiple components, which lowers the probability that a system can execute its required functions with acceptable levels… Click to show full abstract

Correlation can seriously degrade reliability and capacity due to the simultaneous failure of multiple components, which lowers the probability that a system can execute its required functions with acceptable levels of confidence. The high cost of fault in time-critical systems necessitates methods to explicitly consider the influence of correlation on reliability. This paper constructs a network-structured model, namely time-constrained multi-state network (TCMSN), to investigate the capacity of a computer network. In the TCMSN, the physical lines comprising the edges of the computer network experience correlated faults. Our approach quantifies the probability that d units of data can be sent from source to sink in no more than T units of time. This probability that the computer network delivers a specified level of data before the deadline is referred to as the system reliability. Experimental results indicate that the negative influence of correlation on reliability could be significant, especially when the data amount is close to network bandwidth and the time constraint is tight. The modeling approach will subsequently promote design and optimization studies to mitigate the vulnerability of networks to correlated faults.

Keywords: network; time constrained; multi state; reliability; constrained multi

Journal Title: Annals of Operations Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.