LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials

Photo by scottiewarman from unsplash

The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model,… Click to show full abstract

The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model, the Cauchy equation, and the electric field solution obtained from the linearized Poisson-Boltzmann equation, a hyperbolic partial differential equation is obtained to derive the flow field. The PEOF is controlled by the angular Reynolds number, the ratio of the zeta potentials of the microchannel walls, the electrokinetic parameter, and the elasticity number. The main results obtained from this analysis show strong oscillations in the velocity profiles when the values of the elasticity number and the angular Reynolds number increase due to the competition among the elastic, viscous, inertial, and electric forces in the flow.

Keywords: pulsatile electroosmotic; zeta potentials; maxwell fluid; maxwell; electroosmotic flow

Journal Title: Applied Mathematics and Mechanics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.