A parallel nonlinear energy sink (NES) is proposed and analyzed. The parallel NES is composed of a vibro-impact (VI) NES and a cubic NES. The dynamical equation is given, and… Click to show full abstract
A parallel nonlinear energy sink (NES) is proposed and analyzed. The parallel NES is composed of a vibro-impact (VI) NES and a cubic NES. The dynamical equation is given, and the essential analytical investigation is carried out to deal with the cubic nonlinearity and impact nonlinearity. Multiple time-scale expansion is introduced, and the zeroth order is derived to give a rough outline of the system. The underlying Hamilton dynamic equation is given, and then the optimal stiffness is expressed. The clearance is regarded as a critical factor for the VI. Based on the periodical impact treatment by analytical investigation, the relationships of the cubic stiffness, the clearance, and the zeroth-order attenuation amplitude of the linear primary oscillator (LPO) are obtained. A cubic NES under the optimal condition is compared with the parallel NES. Harmonic signals, harmonic signals with noises, and the excitation generated by a second-order filter are considered as the potential excitation forces on the system. The targeted energy transfer (TET) in the designed parallel NES is shown to be more efficient.
               
Click one of the above tabs to view related content.