The nonlinear combined resonance problem of a ferromagnetic circular plate in a transverse alternating magnetic field is investigated. On the basis of the deformation potential energy, the strain potential energy,… Click to show full abstract
The nonlinear combined resonance problem of a ferromagnetic circular plate in a transverse alternating magnetic field is investigated. On the basis of the deformation potential energy, the strain potential energy, and the kinetic energy of the circular plate, the Hamilton principle is used to induce the magnetoelastic coupling transverse vibration dynamical equation of the ferromagnetic circular plate. Based on the basic electromagnetic theory, the expressions of the magnet force and the Lorenz force of the circular plate are presented. A displacement function satisfying clamped-edge combined with the Galerkin method is used to derive the Duffing vibration differential equation of the circular plate. The amplitude-frequency response equations of the system under various combined resonance forms are obtained by means of the multi-scale method, and the stability of the steady-state solutions is analyzed according to the Lyapunov theory. Through examples, the amplitude-frequency characteristic curves with different parameters, the amplitude of resonance varying with magnetic field intensity and excitation force, and the time-course response diagram, phase diagram, Poincare diagram of the system vibration are plotted, respectively. The effects of different parameters on the amplitude and stability of the system are discussed. The results show that the electromagnetic parameters have a significant effect on the multi-valued attribute and stability of the resonance solutions, and the system may exhibit complex nonlinear dynamical behavior including multi-period and quasi-periodic motion.
               
Click one of the above tabs to view related content.