Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the… Click to show full abstract
Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.
               
Click one of the above tabs to view related content.