LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical investigation on aerodynamic performance of a bionic flapping wing

Photo from wikipedia

This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing. The geometry and kinematics are designed based on a seagull wing, in which flapping, folding, swaying, and… Click to show full abstract

This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing. The geometry and kinematics are designed based on a seagull wing, in which flapping, folding, swaying, and twisting are considered. An in-house unsteady flow solver based on hybrid moving grids is adopted for unsteady flow simulations. We focus on two main issues in this study, i.e., the influence of the proportion of down-stroke and the effect of span-wise twisting. Numerical results show that the proportion of down-stroke is closely related to the efficiency of the flapping process. The preferable proportion is about 0.7 by using the present geometry and kinematic model, which is very close to the observed data. Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting. Two cases with different reduced frequencies are simulated and compared with each other. The numerical results show that the power consumption reduces by more than 20%, and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases. The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack. These conclusions will be helpful for the high-performance micro air vehicle (MAV) design.

Keywords: bionic flapping; flapping wing; aerodynamic performance; unsteady flow; geometry; performance

Journal Title: Applied Mathematics and Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.