The nonlinear behaviors and vibration reduction of a linear system with nonlinear energy sink (NES) are investigated. The linear system is excited by a harmonic and random base excitation, consisting… Click to show full abstract
The nonlinear behaviors and vibration reduction of a linear system with nonlinear energy sink (NES) are investigated. The linear system is excited by a harmonic and random base excitation, consisting of a mass block, a linear spring, and a linear viscous damper. The NES is composed of a mass block, a linear viscous damper, and a spring with ideal cubic nonlinear stiffness. Based on the generalized harmonic function method, the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system. The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions. The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities, the transmissibility transition probability density, and the percentage of the energy absorption transition probability density of the linear oscillator. The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio. The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters, which will affect the stability of the system.
               
Click one of the above tabs to view related content.