The size effects on the shear buckling behaviors of skew nanoplates made of functionally graded materials (FGMs) are presented. The material properties are supposed to be changed uniformly from the… Click to show full abstract
The size effects on the shear buckling behaviors of skew nanoplates made of functionally graded materials (FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated effective material properties, various homogeniza-tion schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the significance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less significant for a higher value of the material property gradient index. Furthermore, among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the difference between them reduces by increasing the aspect ratio of the skew nanoplate.
               
Click one of the above tabs to view related content.