LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combining emerging patterns with random forest for complex activity recognition in smart homes

Photo by magicpattern from unsplash

New healthcare technologies are emerging with the increasing age of the society, where the development of smart homes for monitoring the elders’ activities is in the center of them. Identifying… Click to show full abstract

New healthcare technologies are emerging with the increasing age of the society, where the development of smart homes for monitoring the elders’ activities is in the center of them. Identifying the resident’s activities in an apartment is an important module in such systems. Dense sensing approach aims to embed sensors in the environment to report the detected events continuously. The events are segmented and analyzed via classifiers to identify the corresponding activity. Although several methods were introduced in recent years for detecting simple activities, the recognition of complex ones requires more effort. Due to the different time duration and event density of each activity, finding the best size of the segments is one of the challenges in detecting the activity. Also, using appropriate classifiers that are capable of detecting simple and interleaved activities is the other issue. In this paper, we devised a two-phase approach called CARER (Complex Activity Recognition using Emerging patterns and Random forest). In the first phase, the emerging patterns are mined, and various features of the activities are extracted to build a model using the Random Forest technique. In the second phase, the sequences of events are segmented dynamically by considering their recency and sensor correlation. Then, the segments are analyzed by the generated model from the previous phase to recognize both simple and complex activities. We examined the performance of the devised approach using the CASAS dataset. To do this, first we investigated several classifiers. The outcome showed that the combination of emerging patterns and the random forest provide a higher degree of accuracy. Then, we compared CARER with the static window approach, which used Hidden Markov Model. To have a fair comparison, we replaced the dynamic segmentation module of CARER with the static one. The results showed more than 12% improvement in f-measure. Finally, we compared our work with Dynamic sensor segmentation for real-time activity recognition, which used dynamic segmentation. The f-measure metric demonstrated up to 12.73% improvement.

Keywords: emerging patterns; activity recognition; patterns random; random forest; activity

Journal Title: Applied Intelligence
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.