LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global replacement-based differential evolution with neighbor-based memory for dynamic optimization

Photo by refargotohp from unsplash

Dynamic optimization problems challenge the evolutionary algorithms, owing to the diversity loss or the low search efficiency of the algorithms, especially when the problems change frequently. This paper presents a… Click to show full abstract

Dynamic optimization problems challenge the evolutionary algorithms, owing to the diversity loss or the low search efficiency of the algorithms, especially when the problems change frequently. This paper presents a novel differential evolution algorithm to address the dynamic optimization problems. Unlike the most used “DE/rand/1” mutation operator, in this paper, the “DE/best/1” mutation is employed to generate a mutant individual. In order to enhance the search efficiency of differential evolution, the classical differential evolution algorithm is modified by a novel replacement operator, in which the worst individual in the whole population is replaced by the newly generated trial vector as a “steady-state” manner. During optimizing, some newly generated solutions are stored into a memory set, in which these stored solutions are located around the current best solution. When the environmental change is detected, the stored solutions are expected to guide the reinitialized solutions to track the new location of global optimum as soon as possible. The performance of the proposed algorithm is compared with six state-of-the-art dynamic evolutionary algorithms over some benchmark problems. The experimental results show that the proposed algorithm clearly outperforms the competitors.

Keywords: replacement; dynamic optimization; evolution; differential evolution; memory

Journal Title: Applied Intelligence
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.