LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A high-speed D-CART online fault diagnosis algorithm for rotor systems

Photo from wikipedia

Intelligent manufacturing poses a challenge for fault diagnosis of rotor systems to meet the three tasks: whether exists faults, faults location and quantitative diagnosis. Traditional methods hardly meet all the… Click to show full abstract

Intelligent manufacturing poses a challenge for fault diagnosis of rotor systems to meet the three tasks: whether exists faults, faults location and quantitative diagnosis. Traditional methods hardly meet all the three tasks in online fault diagnosis. This paper proposes a modified classification and regression tree (CART) algorithm named D-CART algorithm to provide much faster fault classification by reducing the iteration times in computation while still ensuring accuracy. Experiments are carried on to achieve a comprehensive online fault diagnosis for rotor systems such as faults location, faults types and quantitative analysis of unbalanced mass in this paper. In comparison with the other 4 novel CART-based algorithms, the experimental results indicate that the speed of D-CART algorithm is improved by a factor of 23.92 compared to the fastest improved algorithm (Adaboost-CART) and a model accuracy of up to 96.77%. Thus demonstrating the speed superiority of D-CART algorithm in both diagnosing locations of different faults types and determining the loading masses of unbalanced faults. The proposed method has the potential to realize high-accuracy online fault diagnosis for rotor systems.

Keywords: rotor systems; cart; fault; diagnosis; online fault; fault diagnosis

Journal Title: Applied Intelligence
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.