LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-aware sequence model for next-item recommendation

Photo by jontyson from unsplash

The sequences of users’ behaviors generally indicate their preferences, and they can be used to improve next-item prediction in sequential recommendation. Unfortunately, users’ behaviors may change over time, making it… Click to show full abstract

The sequences of users’ behaviors generally indicate their preferences, and they can be used to improve next-item prediction in sequential recommendation. Unfortunately, users’ behaviors may change over time, making it difficult to capture users’ dynamic preferences directly from recent sequences of behaviors. Traditional methods such as Markov Chains (MC), Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks only consider the relative order of items in a sequence and ignore important time information such as the time interval and duration in the sequence. In this paper, we propose a novel sequential recommendation model, named Interval- and Duration-aware LSTM with Embedding layer and Coupled input and forget gate (IDLSTM-EC), which leverages time interval and duration information to accurately capture users’ long-term and short-term preferences. In particular, the model incorporates global context information about sequences in the input layer to make better use of long-term memory. Furthermore, the model introduces the coupled input and forget gate and embedding layer to further improve efficiency and effectiveness. Experiments on real-world datasets show that the proposed approaches outperform the state-of-the-art baselines and can handle the problem of data sparsity effectively.

Keywords: recommendation; time; next item; model; sequence

Journal Title: Applied Intelligence
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.