LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convolutional residual network to short-term load forecasting

Photo from wikipedia

Since their inception, convolutional neural networks (CNNs) have been shown to have powerful feature extraction and learning capabilities, and the creation of deep residual networks (DRNs) was a milestone in… Click to show full abstract

Since their inception, convolutional neural networks (CNNs) have been shown to have powerful feature extraction and learning capabilities, and the creation of deep residual networks (DRNs) was a milestone in the development of CNNs. However, residual networks mostly use convolution structures, which are widely applied to image recognition and classification problems. Therefore, when facing a load forecasting problem that involves nonlinear regression, will a DRN using a convolution structure still achieve great results? To answer this question, we present a network based on a DRN with a convolution structure to carry out short-term load forecasting, and we mainly focus on the effects of DRNs with different depths, widths and block structures for dealing with nonlinear regression problems. Through multiple sets of controlled experiments, we obtain the best network architecture and the corresponding hyperparameters for short-term load forecasting. The experimental results demonstrate that the model has higher prediction accuracy than existing models, and the DRN with a convolution structure can handle load forecasting while still achieving state-of-the-art results.

Keywords: network; load forecasting; term load; load; short term

Journal Title: Applied Intelligence
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.