LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Phase-Structural Transformations Resulting in Low-Temperature Radiation Embrittlement in Ferritic-Martensitic Steel

Photo from wikipedia

The results of investigations of the microstructure and short-time mechanical properties of EP-450 ferritic-martensitic steel and Kh13M2Yu2 + 1.5% TiO2 dispersion-hardened steel are presented. It is shown that as a… Click to show full abstract

The results of investigations of the microstructure and short-time mechanical properties of EP-450 ferritic-martensitic steel and Kh13M2Yu2 + 1.5% TiO2 dispersion-hardened steel are presented. It is shown that as a result of aging for 25000 h at 400 and 450°C finely dispersed precipitates of the α′-phase are formed in the structure. This increases the strength and decreases the ductility of the steel. The coefficient of hardening by precipitates of the α′-phase in aged dispersion-hardened steel is equal to 2.3. As a result of neutron irradiation at temperature in the interval 285–380°C to maximum dose 56 dpa vacancy pores, dislocation loops, and precipitates of the α′-phase formed in the structure of the EP-450 ferritic-martensitic steel, which also leads to hardening and embrittlement of the steel. The character of the radiation hardening correlates with the dose dependence of the average size and concentration of the formed dislocation loops. The coefficient of hardening of steel EP-450 by dislocation loops and α′-phase precipitates is 1.97 and 2, respectively.

Keywords: steel; radiation; ferritic martensitic; martensitic steel; precipitates phase; temperature

Journal Title: Atomic Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.