LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A robust set approach for mobile robot localization in ambient environment

Photo from wikipedia

Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile… Click to show full abstract

Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator.

Keywords: mobile robot; ambient environment; approach; robot localization; environment

Journal Title: Autonomous Robots
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.