LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Online adaptive teleoperation via motion primitives for mobile robots

Photo by cassidykdickens from unsplash

Assistive teleoperation aims to help operators control robotic systems with ease. In this work, we present a novel adaptive teleoperation approach that is amenable to mobile systems using motion primitives… Click to show full abstract

Assistive teleoperation aims to help operators control robotic systems with ease. In this work, we present a novel adaptive teleoperation approach that is amenable to mobile systems using motion primitives for long-duration teleoperation, such as exploration using mobile vehicles or walking for humanoid systems. We first describe teleoperation using motion primitives, which are dynamically feasible and safe local trajectories based on a kinematic or dynamic model. We take a predict-and-adapt approach to assistive teleoperation, whereby adaptation is based on the predicted user intent. By representing the operator as an optimizing controller, a probabilistic distribution can be constructed for the available future actions based on some reward function. Adaptation is provided in the form of subsampling, which tailors the set of available actions based on the likelihood of action selection. We describe the framework for general systems and delineate the extrapolation to ground, air, and legged mobile robots, and demonstrate generalizability of this framework on two systems via simulation and experimentation; namely, a quadrotor micro air vehicle, and a simulated 3D humanoid system. Both systems show provably better performance in teleoperation by measures of behavioral entropy.

Keywords: adaptive teleoperation; teleoperation; motion primitives; mobile robots; robots online

Journal Title: Autonomous Robots
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.