LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domain Synthesized in E. coli: In Vivo Osteoinductivity in Experimental Models on Small and Large Laboratory Animals

Photo by paipai90 from unsplash

Recombinant human bone morphogenetic protein-2 with an additional s-tag domain (s-tag-BMP-2) synthesized in E. coli is characterized by higher solubility and activity than the protein without additional s-tag domain, which… Click to show full abstract

Recombinant human bone morphogenetic protein-2 with an additional s-tag domain (s-tag-BMP-2) synthesized in E. coli is characterized by higher solubility and activity than the protein without additional s-tag domain, which increases the yield during purification and simplifies protein introduction into the osteoplastic materials. The high osteoinductivity of the demineralized bone matrix with s-tag-BMP-2 was shown on the model of regeneration of cranial defects of a critical size in mice and on the model of implantation of porous titanium matrix into defects of femoral and tibial bones in rabbits.

Keywords: protein; recombinant human; human bone; bone; bone morphogenetic; domain

Journal Title: Bulletin of Experimental Biology and Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.