LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear modeling of cyclic response of RC beam–column joints reinforced by plain bars

Photo from wikipedia

Experience of previous earthquakes shows that a considerable portion of buildings reinforced with plain bars sustain relatively large damages especially at the beam–column joints where the damages are mostly caused… Click to show full abstract

Experience of previous earthquakes shows that a considerable portion of buildings reinforced with plain bars sustain relatively large damages especially at the beam–column joints where the damages are mostly caused by either diagonal shear cracks or intersectional cracks caused by bar slippage. While previous works mainly focus on shear failure mode, in this study, the emphasis is placed on slip based cracks as the dominant failure mode. A systematic procedure is introduced to predict the dominant failure mode at the joint which is based on the dimensional properties, reinforcement details, and axial and shear load at the joint. In addition, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints which fail under bar slippage mode. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints .

Keywords: column; plain bars; beam column; column joints; reinforced plain

Journal Title: Bulletin of Earthquake Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.