This paper presents an experimental investigation of various seismic retrofitting techniques for dry joint flat-stone masonry. During post-earthquake reconstruction in Nepal, it is suggested that flat stone buildings are retrofitted… Click to show full abstract
This paper presents an experimental investigation of various seismic retrofitting techniques for dry joint flat-stone masonry. During post-earthquake reconstruction in Nepal, it is suggested that flat stone buildings are retrofitted by considering the local economy and material availability. However, effective seismic design of dry joint flat-stone masonry buildings is needed to ensure that these buildings will be safer during future earthquakes. Five retrofitting schemes are proposed using locally available and affordable materials. Cyclic in-plane testing was performed for both unreinforced and reinforced specimens. The behavioural characteristics of the specimens are evaluated with the failure mode, load–displacement response, and hysteretic energy dissipation. The experimental results show that the use of wooden/gabion wire bandages and gabion wire jacketing can significantly increase the seismic performance of a dry joint flat-stone masonry building in terms of its energy dissipation and ductility. This study provides scientific support and engineering guidance for development and revision of guidelines and standards for stone masonry structures in Nepal and other developing countries.
               
Click one of the above tabs to view related content.