LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A transferable remote sensing approach to classify building structural types for seismic risk analyses: the case of Val d'Agri area (Italy)

Photo from wikipedia

This study proposes a methodology based on machine learning (ML) algorithms for rapid and robust classification of building structural types (STs) in multispectral remote sensing imagery aiming to assess buildings’… Click to show full abstract

This study proposes a methodology based on machine learning (ML) algorithms for rapid and robust classification of building structural types (STs) in multispectral remote sensing imagery aiming to assess buildings’ seismic vulnerability. The seismic behavior of buildings is strongly affected by the ST, including material, age, height, and other main structural features. Previous works deployed in situ data integrated with remote sensing information to statistically infer STs through supervised ML methods. We propose a transferable methodology with specific focus on situations with imbalanced in situ data (i.e., the number of available labeled samples for model learning differs largely between different STs). We learn a transferable model by selecting features from an exhaustive set. The transferability relies on deploying geometric features characterizing individual buildings; thus, the model is less sensitive to domain adaption problems frequently induced by e.g., changes in acquisition parameters of remotely sensed imagery. Thereby, we show that few geometry features enable generalization capabilities similar to models learned with a large number of features describing spectral, geometrical or contextual building properties. We rely on an extensive geodatabase containing almost 18,000 building footprints. We follow a Random Forest (RF)-based feature selection strategy to objectively identify most valuable features for prediction. Furthermore, the problem of unbalanced classes is addressed by adopting two approaches: downsampling the majority class and modifying the classifier internally (weighted RF). The implemented model is transferred on the challenging urban morphology of the Val d’Agri area (Italy). Results confirm the statistical robustness of the model and the importance of the geometry features, allowing for reliable identification of STs.

Keywords: val agri; methodology; structural types; remote sensing; geometry; building structural

Journal Title: Bulletin of Earthquake Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.