Objective Regio- and stereoselective hydroxylation of lithocholic acid (LCA) using CYP107D1 (OleP), a cytochrome P450 monooxygenase from the oleandomycin synthesis pathway of Streptomyces antibioticus . Results Co-expression of CYP107D1 from… Click to show full abstract
Objective Regio- and stereoselective hydroxylation of lithocholic acid (LCA) using CYP107D1 (OleP), a cytochrome P450 monooxygenase from the oleandomycin synthesis pathway of Streptomyces antibioticus . Results Co-expression of CYP107D1 from S. antibioticus and the reductase/ferredoxin system PdR/PdX from Pseudomonas putida was performed in Escherichia coli whole cells. In vivo hydroxylation of LCA exclusively yielded the 6β-OH product murideoxycholic acid (MDCA). In resting cells, 19.5% of LCA was converted to MDCA within 24 h, resulting in a space time yield of 0.04 mmol L −1 h −1 . NMR spectroscopy confirmed the identity of MDCA as the sole product. Conclusions The multifunctional P450 monooxygenase CYP107D1 (OleP) can hydroxylate LCA, forming MDCA as the only product.
               
Click one of the above tabs to view related content.