Source–sink theory is an ecological framework that describes how site and habitat-specific demographic rates and patch connectivity can explain population structure and persistence across heterogeneous landscapes. Although commonly used in… Click to show full abstract
Source–sink theory is an ecological framework that describes how site and habitat-specific demographic rates and patch connectivity can explain population structure and persistence across heterogeneous landscapes. Although commonly used in conservation planning, source–sink theory has rarely been applied to the management of invasive species. This study tested whether the common carp, one of the world’s most invasive species, exhibits source–sink dynamics in a representative watershed in the Upper Mississippi River Basin comprised of a dozen interconnected ponds and lakes. To test for source–sink population structure, we used standard fish sampling techniques, tagging, and genetic assignment methods to describe habitat-specific recruitment rates and dispersal. Five years of sampling revealed that while adult carp were found across the entire watershed, reproductive success (the presence of young carp) was restricted to shallow ponds. Additionally, nearly a third of the carp tagged in a representative pond dispersed into the connected deeper lakes, suggesting that ponds in this system serve as sources and lakes as sinks. This possibility was confirmed by microsatellite analysis of carp tissue samples (n = 1041) which revealed the presence of two distinct strains of carp cohabitating in the lakes, whose natal origins could be traced back to one of two pond systems, with many adult carp attempting to migrate back into these natal ponds to spawn. We conclude that the distribution and persistence of invasive carp in complex interconnected systems may often be driven by source–sink dynamics and that their populations could be controlled by suppressing reproduction in source habitats or by disrupting dispersal pathways, instead of culling individuals from sink habitats.
               
Click one of the above tabs to view related content.