Invasive alien species are a major driver of biodiversity loss, with their impacts potentially more intense when complexes of cryptic species are involved. In freshwaters, the anthropogenic manipulation of fish… Click to show full abstract
Invasive alien species are a major driver of biodiversity loss, with their impacts potentially more intense when complexes of cryptic species are involved. In freshwaters, the anthropogenic manipulation of fish communities has resulted in altered fish communities, and in Europe has increased the complexity of Phoxinus species assemblages. Here, we investigated the Phoxinus communities of the westernmost part of the Po river basin, where adjacent freshwater ecosystems (Alpine high-altitude lakes and lowland streams) are representative of different management strategies (i.e. manipulated fish communities via stocking in Alpine lakes vs. natural populations in streams). We tested the genetic composition of the cryptic Phoxinus populations inhabiting these waters, as the species are morphologically indistinct. Sequences of the mitochondrial cytochrome oxidase I (COI) were obtained from 239 specimens, with the results indicating that 17 Alpine high-altitude lakes are now populated by a complex of Phoxinus species, comprising P. septimaniae (native to the Mediterranean area of France), P. csikii (native to the Central Balkans) and P. lumaireul (native to the North Adriatic Sea basins). Their introduction resulted from their use as angling live baits. Minnow populations in lowland streams were primarily comprised of native P. lumaireul, with only a single P. csikii specimen detected. While nuclear sequences of the recombination activating gene 1 (RAG1) marker were not useful for tracking the presence of alien alleles in these stream populations, the COI data emphasised the importance of using molecular tools to investigate cryptic species complexes that have been modified by anthropogenic activities.
               
Click one of the above tabs to view related content.