LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Response of Arabidopsis thaliana root growth to phosphorus and its relation to media chemical composition

Photo from wikipedia

The interaction between phosphorus (P) and other media components alters root development and masks the plant response and thus limits the ability to correctly identify P-deficiency response (pdr) mutants. This… Click to show full abstract

The interaction between phosphorus (P) and other media components alters root development and masks the plant response and thus limits the ability to correctly identify P-deficiency response (pdr) mutants. This study aims to assess changes in root development caused by different composition of growth media normally used in Arabidopsis research and to study their effects on pdr-mutant screening. Primary root growth of four genotypes was analyzed in media differing in P concentrations: half-strength Murashige and Skoog (½ MS) and Somerville and Ogren (SO). The effects of nitrogen source and Fe on root growth were investigated in each medium separately and in a mixture. We found that the primary root length of all genotypes grown on ½ MS was reduced in comparison with plants grown on SO medium. The mutant pdr9 was the most sensitive in ½ MS, This mutant was also hypersensitive to Fe that intensified its sensitivity to ammonium. Ammonium increased the root inhibition caused by Fe also in wild-type plants. In conclusion, on the basis of our study we recommend to use SO medium, which ensures an efficient selection to screen for pdr mutants through root growth. Moreover, nitrogen sources in the media other than nitrate should be taken carefully.

Keywords: response; root growth; phosphorus; composition; growth

Journal Title: Biologia Plantarum
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.