In this paper, we present a variational integrator that is based on an approximation of the Euler–Lagrange boundary-value problem via Taylor’s method. This can be viewed as a special case… Click to show full abstract
In this paper, we present a variational integrator that is based on an approximation of the Euler–Lagrange boundary-value problem via Taylor’s method. This can be viewed as a special case of the shooting-based variational integrator. The Taylor variational integrator exploits the structure of the Taylor method, which results in a shooting method that is one order higher compared to other shooting methods based on a one-step method of the same order. In addition, this method can generate quadrature nodal evaluations at the cost of a polynomial evaluation, which may increase its efficiency relative to other shooting-based variational integrators. A symmetric version of the method is proposed, and numerical experiments are conducted to exhibit the efficacy and efficiency of the method.
               
Click one of the above tabs to view related content.