LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cortical Signal Suppression (CSS) for Detection of Subcortical Activity Using MEG and EEG

Photo from wikipedia

Magnetoencephalography (MEG) and electroencephalography (EEG) use non-invasive sensors to detect neural currents. Since the contribution of superficial neural sources to the measured M/EEG signals are orders-of-magnitude stronger than the contribution… Click to show full abstract

Magnetoencephalography (MEG) and electroencephalography (EEG) use non-invasive sensors to detect neural currents. Since the contribution of superficial neural sources to the measured M/EEG signals are orders-of-magnitude stronger than the contribution of subcortical sources, most MEG and EEG studies have focused on cortical activity. Subcortical structures, however, are centrally involved in both healthy brain function as well as in many neurological disorders such as Alzheimer’s disease and Parkinson’s disease. In this paper, we present a method that can separate and suppress the cortical signals while preserving the subcortical contributions to the M/EEG data. The resulting signal subspace of the data mainly originates from subcortical structures. Our method works by utilizing short-baseline planar gradiometers with short-sighted sensitivity distributions as reference sensors for cortical activity. Since the method is completely data-driven, forward and inverse modeling are not required. In this study, we use simulations and auditory steady state response experiments in a human subject to demonstrate that the method can remove the cortical signals while sparing the subcortical signals. We also test our method on MEG data recorded in an essential tremor patient with a deep brain stimulation implant and show how it can be used to reduce the DBS artifact in the MEG data by ~ 99.9% without affecting low frequency brain rhythms.

Keywords: meg eeg; method; cortical signal; brain; activity

Journal Title: Brain Topography
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.