LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pepducin ICL1-9-Mediated β2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a Gi Protein/ROCK/PKD-Sensitive Manner

Photo by nofish from unsplash

β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner… Click to show full abstract

β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of β2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a β-arrestin (βarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of βarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of β2AR to promote Gi protein/βarr-dependent activation of RhoA/ROCK/PKD signaling.

Keywords: icl1 mediated; contractility; icl1; cardiomyocyte contractility; manner

Journal Title: Cardiovascular Drugs and Therapy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.